ANTS Steps - Explanaing processing (not how-to)
These folders will be created (no need to create them):
(antsenv) root@REDWSONFAC26495:~# mkdir ~/rats_mri_project/
(antsenv) root@REDWSONFAC26495:~# cd rats_mri_project/
(antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir template
(antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir priors
(antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir subjects
(antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir outputs
Segmentation (Atropos)
priors as your initial, spatial expectations (“in this location GM is usually likely”), and the posteriors as updated, subject-specific probabilities after Atropos has looked at that person’s actual image intensities and applied the EM classification model.
intensity model (mixture of Gaussians)
p(I | class_k, θk) ↑
│
prior_k(x) ─────────► Bayes rule ──────► posterior_k(x)
+ MRF smoothing
Priors (
prior_k(x)
) come from your atlas or numeric aliases
(rat_101_prior_01.nii.gz
, …) and supply only spatial information, weighted here at 20 % (0.2
in the initializer).The EM loop estimates intensity-class parameters θk from the subject’s image (
-a $img_brain
).Bayes + MRF produce the voxel-wise posteriors:
P(class k | intensity I, location x, priors).
So yes—the posteriors are sharpened, subject-specific versions of the priors.