ANTS Steps - Explanaing processing (not how-to)

ANTS Steps - Explanaing processing (not how-to)

These folders will be created (no need to create them):

(antsenv) root@REDWSONFAC26495:~# mkdir ~/rats_mri_project/ (antsenv) root@REDWSONFAC26495:~# cd rats_mri_project/ (antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir template (antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir priors (antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir subjects (antsenv) root@REDWSONFAC26495:~/rats_mri_project# mkdir outputs
image-20250422-212331.png

Segmentation (Atropos)

 

priors as your initial, spatial expectations (​“in this location GM is usually likely”​), and the posteriors as updated, subject-specific probabilities after Atropos has looked at that person’s actual image intensities and applied the EM classification model.

intensity model (mixture of Gaussians) p(I | class_k, θk) ↑ prior_k(x) ─────────► Bayes rule ──────► posterior_k(x) + MRF smoothing
  • Priors (prior_k(x)) come from your atlas or numeric aliases
    (rat_101_prior_01.nii.gz, …) and supply only spatial information, weighted here at 20 % (0.2 in the initializer).

  • The EM loop estimates intensity-class parameters θk from the subject’s image (-a $img_brain).

  • Bayes + MRF produce the voxel-wise posteriors:
    P(class k | intensity I, location x, priors).

So yes—the posteriors are sharpened, subject-specific versions of the priors.